Algorithmic worlds |
|
|||||||||
Search blog posts2015-06-23 Inceptionism 2015-04-26 Exhibit 2014-12-14 Earth View 2014-10-05 Iterations 2014-08-24 Frank Berg 2014-08-13 Bridges 2014 2014-04-09 High ball stepper 2014-03-30 Appolonian gaskets 2014-03-02 Michael Faber 2014-02-23 New panorama applet |
BlogA blog about algorithmic art and fractal aesthetic. Click here to subscribe to the RSS feed. October 5th 2014 IterationsAll my recent works are obtained by iterating rational maps of the Riemann sphere to itself that have dense chaotic orbits. Each point on the sphere corresponds to an orbit, and is essentially colored according to the mean distance of the orbit to a given point on the sphere. Because of the dense chaotic orbits, dense fractal patterns appear in this way. Related patterns appear when one considers iterations of the original map. One can picture the nth iteration of the map by taking into account only every nth point in the orbit when computing the average distance of the orbit. The resulting patterns are closely related, their structures disintegrating slowly as n is increased. The following series of works exemplifies this phenomenon. The rational map is a Nova map with exponent 4. The images depict respectively the 1st, 4th, 6th, 8th and 12th iteration of the Nova map. Click on the pictures to get to the page of the work, where you can either zoom into the picture, or see the whole spherical pattern panoramically.
comments powered by Disqus |
|||||||||
|